1.一个股票涨跌,跟 新闻、政策、基本面、情绪、牛熊市、主力、机构、游资 操作,等等非数值因素,也有很大关系,这些指标又没法 数值量化 (也没有啥数据源 网站之类的,能做到 统计 定量 定性 这些指标的吧 )

2.所以对一般的 k 线数据(开盘价,收盘价,最低价,最高价,成交量 ,财务指标 等等),进行数据分析,有意义吗? 可能你分析出来的策略,是上面的 事件驱动 情况引起的!

3.假使一个策略,回测挺好的,很多年来看 正收益,那执行这个策略,不管涨跌,应该等很多年,长久的来看! 那中途的时候,什么情况下,才能判定策略不行了,需要换策略?

举报· 319 次点击
登录 注册 站外分享
2 条回复  
Sawyerhou 小成 2024-11-13 09:56:21
1 、这些是可以量化的,基本面量化是最早的量化方向之一,非结构数据量化现在做的人也很多,起源于华尔街,虽然很新但技术有一定成熟度 2 、收益由非常多的因素同时驱动,量价分析只能解释由量价驱动或者可由量价解释的部分,可以肯定的是,量价的确是价格的驱动因素之一 3 、合理的回测可以给予投资者一定的信心,如果回测都表现不好,那可以认为策略是无效的,当然这也不绝对
bigtan 小成 2024-11-13 09:25:35
1.做量化的经常有一句话:所有的信息都在价格里面,你当然可以去研究这些非标准化的信息,但是很难回溯,但是更多的是研究从价格里面反应出来的 inside trader 的行为,并且针对性的去交易; 2.量价分析当然是有意义的,但是不是唯一,这只是一条路,原因同上; 3.这个就仁者见仁智者见智了,我一般是破最大回撤减半仓位,再破就下行重新回炉,主要是检验模型依赖的数据和逻辑有没有发生变化;
返回顶部